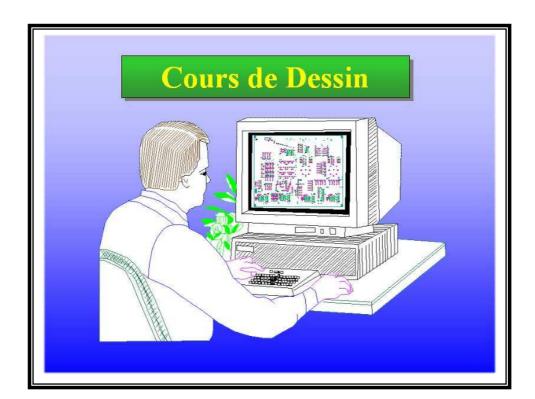


Programme du F.E.S.E.C. D/2001/7362/3091



Professeur
Ingénieur
Ph. THYS

Note de dessin

Chapitre II : dessin et technologie électrique

Classes concernées :

Secteur: Industrie

Section : Technique de qualification **Option :** Electricien – Automaticien

Années: 5ème et 6ème

Référence du Syllabus.

Note - dessin - Elec - V 02

57 pages

Version 02/2009

Note de dessin – Electricité

Page 2 / 57

Table des matières.

1. Préface	4
2. Préambule	5
2.1. Cas d'un cahier des charges détaillé	
2.2. Cas d'un cahier des charges partiel	5
2.3. Cas d'un cahier des charges réduit à sa plus simple expression	5
3. Développement d'une étude	
3.1. La structure de la distribution électrique	6
3.1.1. Faut-il un différentiel général?	
3.1.2. Faut-il une protection generale ?	8
3.1.3. Faut-il un organe de coupure général ?	
3.1.4. Comment se distribue l'énergie aux autres circuits dans le tableau?	12
3.1.4.1. Sans jeu de barre.	
3.1.4.2. Avec jeu de barre	12
3.1.5. Faut-il placer des témoins de phases ?	13
3.1.5.1. Témoins sur réseau 3*240V	13
3.1.5.2. Témoins sur réseau 3*400V + N	
3.1.6. Comment se font les départs secondaires ?	14
3.1.6.1. Distribution identique à l'alimentation générale	14
3.1.6.2. Distribution partielle de l'alimentation générale	15
3.1.6.3. Distribution monophasée au départ d'une alimentation tripolaire	15
3.1.6.4. Distribution monophasée au départ d'une alimentation tétrapolai	ire16
3.1.6.5. Distribution monophasée et création d'un potentiel très basse ter	
3.1.6.6. Distribution continue au départ d'une alimentation alternative	17
3.2. Etablissement des plans de commande	17
3.2.1. Analyse par le grafcet	18
3.2.1.1. Le grafcet de niveau 1	
3.2.1.2. Le grafcet de niveau 2	19
3.2.1.3. Les équations logiques	19
3.2.1.4. Le plan de commande	19
3.2.2. Analyse par la logique.	20
3.3. Etablissement des plans de puissance	24
3.4. Détermination des notes de calcul	24
3.4.1. Pour la partie commande et synoptique	25
3.4.2. Pour la partie puissance	25
3.4.3. Pour la partie distribution	25
3.5. Le dimensionnement de la filerie	26
3.6. Le bornier	26
3.7. Les listes des liaisons	27
3.8. La liste du matériel	
3.9. La page de garde	
4. Exemple de dossier complet	27

COURS DE DESSIN

Page 3 / 57

5. Documents techniques utile	41
6. SIF 20-2-1	
7. SIF 22-2-2	
8. SAF 24-2-3	
9 SIF 29-2-4	55

COURS DE DESSIN

Page 4 / 57

Note de dessin – Electricité

1. Préface

L'objectif de ce cours d'électricité est de faire découvrir le dessin électrique industriel.

Par une série d'exercices progressifs, le cours va développer les approches de conception de plans et autres schémas industriels.

Le cours sera mené par une pédagogie adaptée, un projet développé avec le professeur et un second du même type confié aux étudiants en autonomie.

Le cours sera construit au départ de quelques notions plus théoriques liées au dimensionnement des composants et à la structure des plans. Cette partie sera associée à une série de fiches technologiques reprenant toutes les caractéristiques indispensables à la maîtrise et à la mise en œuvre par la suite.

Pour chaque projet de dessin électrique, les étudiants devront présenter un dossier complet dont un exemple peut-être téléchargé sur le site de M. THYS <u>www.phtelec.be</u>

Un dossier est complet s'il possède :

- > une page de garde reprenant la table des matières
- les notes de calcul
- ► le(s) plan(s) de distribution
- ➤ le(s) plan(s) de commande
- > le(s) plan(s) de synoptique
- ➤ le(s) plan(s) de puissance
- le plan du bornier
- > la liste des liaisons
- > la liste du matériel

Il est attendu des étudiants, en fin de cycle, qu'ils soient capables d'établir ce type de dossier, d'en rédiger tous les points et de garantir la fonctionnalité des plans élaborés en respect aux consignes d'un cahier des charges.

Note de dessin – Electricité

Page 5 / 57

2. Préambule

Il existe plusieurs situations dans le cadre d'un projet d'élaboration de plans électriques. Sur base des informations reçues via le cahier des charges (CDC), l'analyse du sujet à traiter est plus ou moins simplifiée.

2.1. Cas d'un cahier des charges détaillé

Ce genre de dossier, bien que très rare, existe toutefois encore dans les cas ou les exigences doivent être respectées à la lettre. Dans ce type de cahier des charges, la personne qui va établir les plans doit en tout point se plier aux exigences du CDC. L'étude complète ayant été réalisé préalablement, le CDC reprend avec précision la structure et la description du matériel à mettre en œuvre.

La procédure à suivre pour établir les plans reste toutefois la même que pour les autres cas et exige une rigueur dans la transcription des exigences.

2.2. Cas d'un cahier des charges partiel

Ce type de dossier est de loin le plus répandu, un cahier des charges trace les grandes lignes de l'installation électrique en précisant les informations cruciales. La structure et la description des composantes annexes indispensables au fonctionnement global du système sont alors laissé au libre choix du concepteur qui doit toutefois respecter les règles de l'art et le RGIE ou autres normes fixant le travail. Le concepteur devra ici veiller à sélectionner du matériel compatible répondant aux critères fonctionnels. Dans le cas d'un entrepreneur, il faudra également veiller à retenir la solution conforme la moins coûteuse dans le cas de marché public.

La procédure à suivre pour établir les plans restent toutefois la même que pour les autres cas et exige une attention particulière dans le choix des composants non définis.

2.3. Cas d'un cahier des charges réduit à sa plus simple expression

Dans certains cas, le cahier des charges se borne à énumérer le fonctionnement souhaité, la responsabilité étant dans ce cas renvoyée au concepteur.

Dans ce type de dossier, le concepteur est libre d'apporter la solution qu'il estime la plus compétitive. La détermination de la logique de câble ainsi que la sélection et le dimensionnement des composants seront de sa responsabilité.

Il est évident que toutes les règles imposées au domaine des installations électriques devront être respectées.

L'installation devra garantir, bien sur, le fonctionnement souhaité, mais également la protection des personnes et tous les éléments matériels associés au système.

La procédure à suivre pour établir les plans restent toutefois la même que pour les autres cas et exige une attention très importante dans le choix de la technique utilisée pour vérifier les exigences, dans le choix des composants mais aussi dans la qualité du produit fini. Il faut parfois ici prévoir l'imprévisible pour que le client soit satisfait de la réaction du système dans des situations particulières. Comme exemple, un petit problème ne peut pas immobiliser toute une production.

COURS DE DESSIN

Note de dessin – Electricité

Page 6 / 57

3. Développement d'une étude

3.1. La structure de la distribution électrique

Le premier travail à réaliser est de définir la structure de la distribution électrique du coffret ou de l'armoire électrique.

Il faut dans un premier temps identifier le type de réseau d'alimentation disponible :

- > 2*240V
- > 3*240V
- > 3*400V+N+PE
- > 2*24V
- > 2*12V

Il faut ensuite définir le régime du neutre :

- Réseau TN
- Réseau TT
- Réseau IT

Il est très important de définir ces deux points car ils vont permettre de sélectionner le type et la nature des protections à mettre en œuvre.

Le présent cours se bornera à traiter le cas des réseaux TN.

Sur base des informations recueillies, nous pouvons démarrer l'analyse de la structure de la distribution électrique.

3.1.1. Faut-il un différentiel général?

Le différentiel joue le rôle de protection des personnes contre les chocs électriques direct ou indirect. La décision d'en placer un dépend de plusieurs facteurs.

- L'installation offre t'elle un risque pour les personnes?
- L'installation est-elle dans l'ombre d'une autre installation déjà protégée par un différentiel ? (Exemple : TGBT vers coffret divisionnaire)
- La ligne d'alimentation du système est-elle protégée par un différentiel ?
- ➤ La nouvelle installation exige t'elle d'avoir une sélectivité propre par rapport aux autres infrastructures ?

La décision repose souvent sur le bon sens et toujours sur l'application du RGIE.

COURS DE DESSIN

Page 7 / 57

Note de dessin – Electricité

Si vous décidez de placer un système différentiel, il vous faudra encore sélectionner le type :

- > interrupteur différentiel
- > dispositif différentiel
- > relais différentiel
- disjoncteur différentiel

L'interrupteur différentiel sera utilisé sur les installations de faible puissance, 16, 25, 40, 63, 80 ou 100A au maximum. Le pouvoir de coupure d'un tel appareil est inexistant puisqu'il n'est pas prévu pour couper des courants de court-circuit. Les courants résiduels peuvent–être de 10, 30, 100, 300, 500, 1000mA. Ont les trouvent en bipolaire et en tétrapolaire.

Le dispositif différentiel sera lui toujours associé à un disjoncteur. Le différentiel ici utilise les contacts du disjoncteur pour interrompre le circuit. Le dispositif différentiel est donc en quelque sorte un organe d'analyse et de commande. Il sera utilisé sur des installations de 32, 63 ou 125A au maximum. Cette limite est due aux conducteurs de liaison avec le disjoncteur. Le pouvoir de coupure d'un tel appareil est ici fonction du pouvoir de coupure du disjoncteur associé. Les courants résiduels peuvent–être de 30, 100, 300, 500, 1000mA. Ont les trouvent en bipolaire, en tripolaire et en tétrapolaire. Si on passe dans la gamme des disjoncteurs sous boîtier moulé, il est possible également de leur adjoindre un dispositif différentiel. On peut alors monter à des courants de 1250A. Dans ce cas de figure, les dispositifs différentiels offriront une plage de réglage sur le courant résiduel et parfois la possibilité de généré un retard dans le déclenchement.

Le relais différentiel sera toujours associé à un tore et permet de travailler sur des installations de forte puissance. Courant de l'ordre de 125, 160, 400, 630, 800, 1000, 1250A. Le tore est traversé par les conducteurs actifs de l'installation ce qui permet de transmettre au relais différentiel toute information sur un courant de défaut. Le relais différentiel permet de régler sa sensibilité de 0.03, 0.3, 0.5 ou 1A mais aussi de sélectionner une temporisation au déclenchement de 0 à 1s. Sur base d'un défaut, et en respect aux réglages de l'appareil, il pilotera un organe de coupure à distance comme un disjoncteur sous boîtier moulé.

Le disjoncteur différentiel provient de la fusion d'un dispositif différentiel et d'un disjoncteur. La gamme est à ce jour réduite et les applications restent limitées. Il peut-être utilisé sur des installations de faibles puissances, 4, 6, 10, 16, 20, 25, 32 et 40A. Le pouvoir de coupure est de maximum 3KA. Les courants résiduels peuvent—être de 10, 30, 300mA. Ont les trouvent uniquement en bipolaire avec une caractéristique « C » pour la courbe de déclenchement du disjoncteur.

Il faut être vigilant dans le choix d'un différentiel sur installation industrielle. Dans le domestique, l'interrupteur différentiel est roi car il est compact et placé en aval du disjoncteur principal. En industrie, cette disposition est rare et nécessite une autre approche.

COURS DE DESSIN

Page 8 / 57

Note de dessin – Electricité

Il ne faut jamais oublier que si le différentiel de votre maison déclenche à cause du frigo, il serait inadmissible qu'une usine soit mise à l'arrêt à cause d'un défaut sur la lampe de bureau de l'hôtesse d'accueil.

L'analyse de la sélectivité est donc très importante en industrie.

Rappelez-vous encore que la mise en place systématique d'un différentiel n'est pas une obligation et que bon nombre d'installation industrielle travaille sans cette protection.

3.1.2. Faut-il une protection generale?

Chaque coffret ou armoire de distribution électrique ne possède pas forcément une protection générale. A nouveau, l'analyse globale de l'installation le justifiera.

- Existe t'il déjà une protection générale ailleurs ?
- > Devez-vous garantir une sélectivité avec le reste de l'installation ?
- ➤ En cas de court-circuit en aval du coffret, acceptez-vous que tous les éléments soient mis hors tension ?

Une fois de plus, la décision sera fondée sur le respect du RGIE et sur la structure des installations en place.

Si vous décidez de placer une protection générale, il vous faudra encore sélectionner le type :

- disjoncteur
 - o type modulaire
 - o type sous boîtier moulé
- > fusibles
 - o embase pour fusibles
 - o sectionneur à fusibles
 - o interrupteur sectionneur à fusibles

Le choix entre un fusible et un disjoncteur est associé à deux points précis. Le premier est la facilité d'utilisation qui place le disjoncteur au premier rang de par sa possibilité de réarmement. Le second réside dans le pouvoir de coupure du composant. Dans les fortes intensités, en sortie de transformateur par exemple, le pouvoir de coupure de la protection doit être important afin de reprendre tout court-circuit en tête d'installation. La mise en place, dans ce cas, d'un disjoncteur est coûteuse et encombrante. La solution idéale est de placer des fusibles. Le coût en est réduit, l'encombrement également. L'emplacement de ces protections offre un pourcentage de risque de déclenchement très faible ce qui rend les fusibles fiables. De plus, la mise en place des fusibles permet de réduire sur les protections en aval le pouvoir de coupure des protections de proximités.

COURS DE DESSIN

Page 9 / 57

Note de dessin – Electricité

En règle générale, sans déroger au RGIE, les disjoncteurs seront implantés aux lieux ou les risques de déclenchement sont les plus élevés.

Pour les disjoncteurs modulaires, la gamme des courants assignés reprend de 0.5, 1, 2, 4, 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100 ou 125A. Il faudra veiller à respecter leur pouvoir de coupure de 3, 6 ou 10KA. On les retrouve en version unipolaire, bipolaire, tripolaire et tétrapolaire. Les courbes de déclenchement proposées sont B, C ou D.

Pour les disjoncteurs sous boîtier moulé, il faut savoir qu'il offre des plages de réglage sur les éléments thermique et/ou magnétique. Pour certains appareils, les déclencheurs sont interchangeables. Il est également possible de leur adjoindre un dispositif différentiel. La gamme des courants assignés reprend de 100, 125, 160, 250, 400, 630, 800, 1250A. Il faudra veiller à respecter leur pouvoir de coupure de 5 à 130 KA. On les retrouve en version bipolaire, tripolaire et tétrapolaire.

Les fusibles peuvent se retrouver sous plusieurs formes,

- > fusibles à broches
- > fusibles à couteaux
- > fusibles cylindriques

Leur utilisation est unique, après déclenchement ils devront être remplacés. Le fusible reste une des protections les plus utilisées en industrie, d'un coût moindre et d'une interchangeabilité rapide en font un organe de protection intéressant. Ne perdons pas de vue que les installations électriques industrielles ne sont pas ouvertes à tout un chacun et que les personnes devant intervenir sur ce type d'installation sont formées pour une maîtrise parfaite des risques.

Pour les fusibles à broches, on retrouve une gamme de 2, 4, 6, 10, 16, 20, 25, 32, 40 et 50A. Le pouvoir de coupure est de 10KA de 2 à 25A et de 6KA de 32 à 50A.

Pour les fusibles à couteaux, on retrouve une gamme de 25, 32, 36, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000 et 1250A. Le pouvoir de coupure est de 120KA.

Pour les fusibles cylindriques, on retrouve une gamme de 0.2, 0.5, 0.63, 1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6, 6.3, 10, 12, 16, 20, 25, 32, 40, 50, 63, 80, 100 ou 125A. Le pouvoir de coupure est de 0.5, 1.5, 6, 20 ou 100KA.

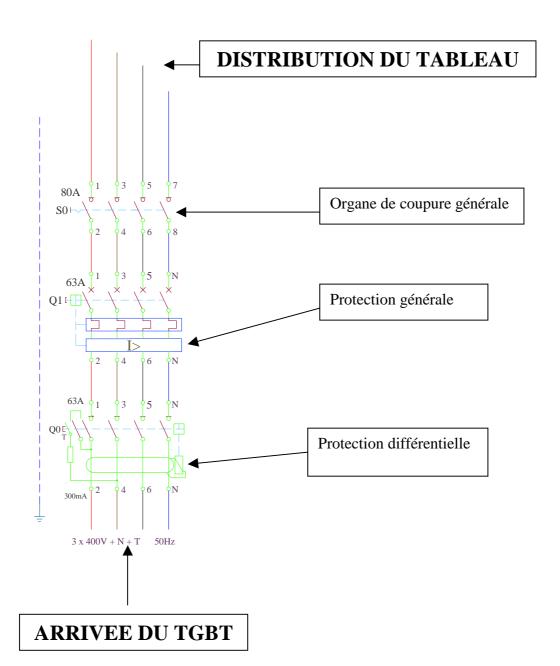
Note de dessin – Electricité

Page 10 / 57

3.1.3. Faut-il un organe de coupure général?

Dans certains cas, il est nécessaire de prévoir la possibilité de mettre hors service un coffret ou une armoire. On place alors un interrupteur général ou un sectionneur général. Le plus souvent, on les retrouve sous forme d'interrupteur sectionneur. Retenez qu'un sectionneur ne possède aucun pouvoir de coupure et qu'il ne peut donc être manœuvré en charge. Un interrupteur possède par contre un pouvoir de coupure qui lui permet une coupure sous charge. La commande sera manuelle et dans la plupart des cas, elle se trouve sur la porte du coffret ce qui ne nécessite pas l'ouverture de celui-ci.

Les interrupteurs sectionneurs DIN offrent une gamme de 16, 25, 32, 40, 63, 80, 80, 100, 125, 160 ou 200A. On les retrouve en version bipolaire, tripolaire et tétrapolaire.


Les interrupteurs sectionneurs muraux offrent une gamme de 40, 63, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500 et 3150A.

Le choix de placer ou non un interrupteur général dépendra de l'équipement annexe du coffret. Si les protections sont des fusibles, le placement d'un interrupteur sera judicieux, par contre si les protections sont de type disjoncteur, il pourrait y avoir double emploi sauf si l'on désire que la coupure puisse être réalisée coffret fermé. A nouveau, le RGIE et ici le cahier des charges doivent vous aider à prendre une décision.

Nous venons de tracer la structure de la distribution d'un tableau électrique au sens large. D'un point de vue représentation symbolique, voici ce que cela pourrait donner.

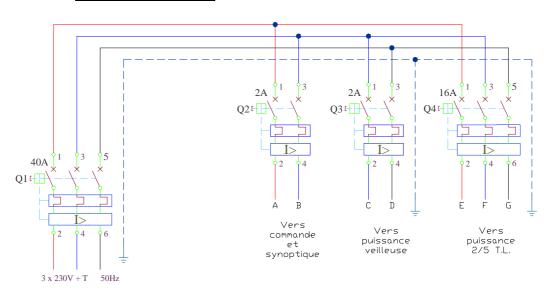
Page 11 / 57

Photology

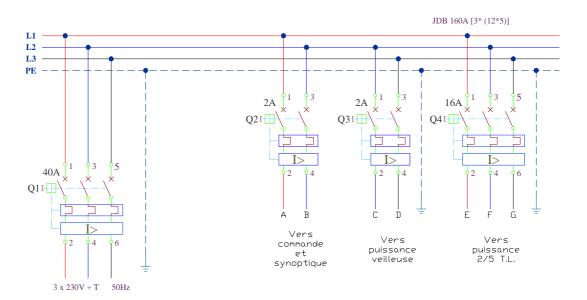
COURS DE DESSIN

Page 12 / 57

Note de dessin – Electricité


3.1.4. <u>Comment se distribue l'énergie aux autres circuits dans le tableau?</u>

Vous n'avez ici que deux possibilités, soit en passant par un jeu de barres soit par filerie.


Les jeux de barres seront de type préfabriqué 63, 160A ou construit sur mesure avec des barres de cuivre pré dimensionnées et préforées.

Voici les représentations dans les deux cas.

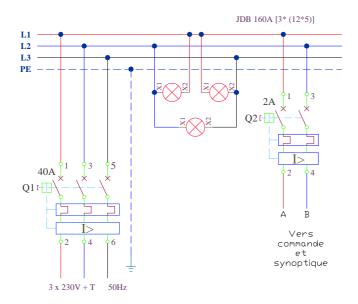
3.1.4.1. Sans jeu de barre.

3.1.4.2. Avec jeu de barre.

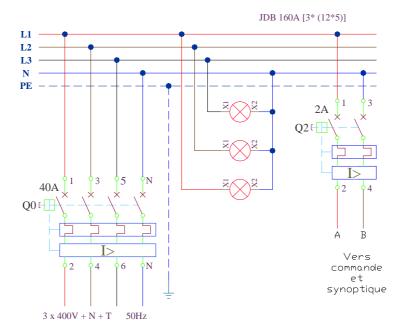
Photology

COURS DE DESSIN

Page 13 / 57


Note de dessin - Electricité

3.1.5. Faut-il placer des témoins de phases ?


La présence de témoins de phases n'est pas une obligation mais permet une visualisation directe de l'état de mise sous tension du tableau sans prise de mesure interne. Dans bien des cas, les témoins se trouvent sur la porte de l'armoire.

En fonction du type de réseau, le raccordement sera différent.

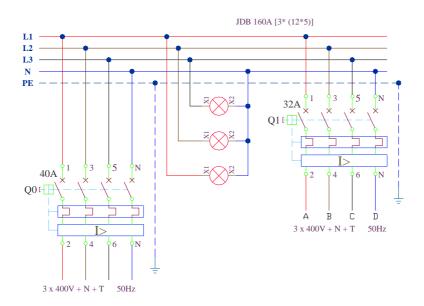
3.1.5.1. <u>Témoins sur réseau 3*240V</u>

3.1.5.2. <u>Témoins sur réseau 3*400V + N</u>

Note de dessin – Electricité

Page 14 / 57

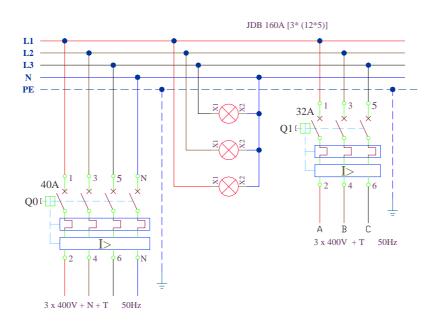
3.1.6. Comment se font les départs secondaires ?

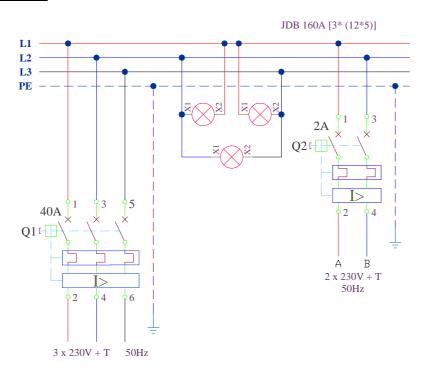

La protection de ce type de circuit est souvent la dernière avant les composants, on y retrouvera donc des fusibles ou des disjoncteurs. L'analyse de la probabilité de déclenchement permettra dans certaines situations de faire le choix judicieux. Pour les autres situations, les caractéristiques de la charge et les exigences du cahier des charges permettront de réaliser le choix. Précisons que les protections devront toujours être retenues en fonction de la charge, l'aspect magnétique pour les courts-circuits et l'aspect thermique pour les surcharges. Cette remarque pour dire qu'il ne faut pas forcément placer des disjoncteurs magnéto-thermiques partout.

Chaque départ sera associé à un repérage des phases afin d'établir la lisibilité entre plans. Vous préciserez également pour chaque départ la tension distribuée et éventuellement une information sur le circuit qui sera desservi.

Garder en mémoire que vos plans doivent donner toutes les informations nécessaires à la mise en œuvre et à la compréhension par des tiers.

Il existe plusieurs possibilités de créer les départs secondaires.

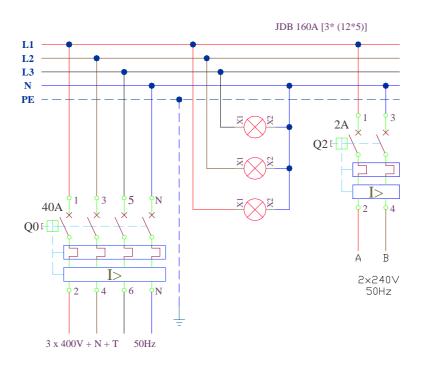

3.1.6.1. Distribution identique à l'alimentation générale

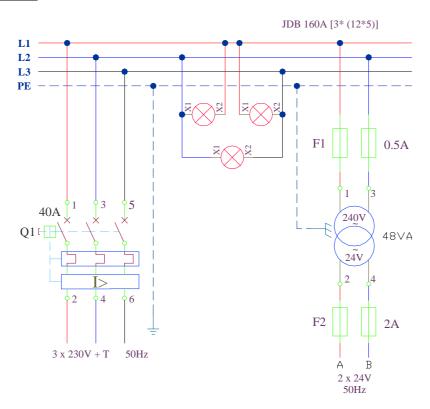

Note de dessin - Electricité

Page 15 / 57

3.1.6.2. <u>Distribution partielle de l'alimentation générale</u>

3.1.6.3. <u>Distribution monophasée au départ d'une alimentation tripolaire</u>

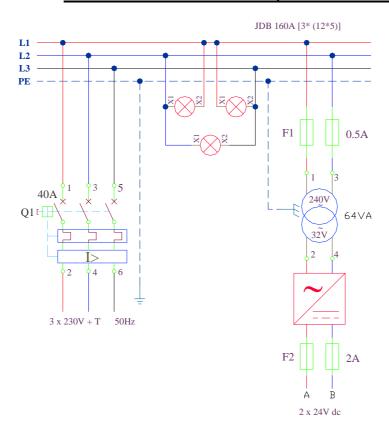



Note de dessin – Electricité

Page 16 / 57

3.1.6.4. <u>Distribution monophasée au départ d'une alimentation tétrapolaire</u>

3.1.6.5. <u>Distribution monophasée et création d'un potentiel très basse tension</u>



Note de dessin – Electricité

Page 17 / 57

3.1.6.6. Distribution continue au départ d'une alimentation alternative

A ce stade, vous avez tracé au brouillon la structure de votre plan de distribution. Vous ne pouvez toutefois pas le finaliser, car vous ne connaissez pas encore les caractéristiques des composants. Il vous faudra pour le terminer rédiger vos notes de calculs. Une note pour la commande et la signalisation, une note pour la puissance et enfin une note global pour l'installation.

3.2. Etablissement des plans de commande

Pour établir la note de calcul de la commande, vous devez préalablement définir de qui sera constitué ce dernier.

Sur base du cahier des charges, vous devez établir les plans de commande du système. Ce plan de commande est de loin le plus important mais aussi le plus compliqué à réaliser. Il doit prévoir la gestion du système en réagissant correctement à toutes les situations.

Les plans de commande fonctionneront sous tension continue ou sous tension alternative.

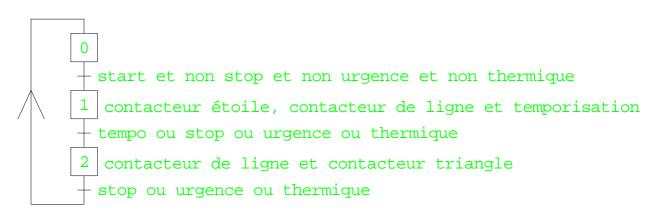
Les potentiels utilisés pourront, en standard, être du 240V AC, du 24V AC du 240V DC ou du 24V DC. D'autres potentiels sont possibles si le CDC l'exige.

Page 18 / 57

Note de dessin – Electricité

Notons qu'un plan de commande pourrait être réalisé avec plusieurs tensions de service. Dans ce cas, pour une lisibilité des plans et une facilité de lecture, le plan de commande sera décomposé en sous-ensemble (fonction des potentiels) qui seront représentés sur des pages spécifiques.

Il existe deux techniques pour établir un plan de commande.

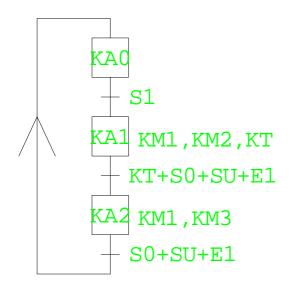

3.2.1. Analyse par le grafcet.

La façon de construire un plan de commande et l'approche pour en définir la structure nécessite une bonne logique. Une technique est de dresser le grafcet du fonctionnement défini dans le CDC. Sur base de ce dernier, en déduire les équations. Ces dernières seront ensuite transcrites en schéma à contacts qui donnera votre plan de commande. Il vous suffira alors de compléter avec les sécurités et autres spécificités demandées.

Exemple:

Afin de bien comprendre la philosophie, analysons le plan de commande d'un démarrage étoile-triangle automatique pour un moteur asynchrone à cage. La mise en marche sera réalisée via un BP (start-S1), l'arrêt par un second BP (stop-S0), un arrêt d'urgence (SU) sera encore prévu de même qu'une dérogation pour un déclenchement thermique (E1) sur le moteur.

3.2.1.1. Le grafcet de niveau 1


Ph elec

COURS DE DESSIN

Note de dessin – Electricité

Page 19 / 57

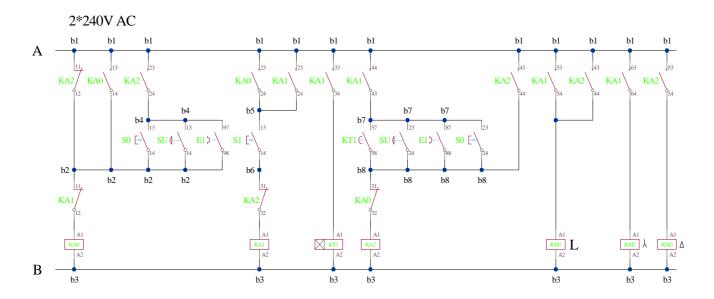
3.2.1.2. Le grafcet de niveau 2

3.2.1.3. Les équations logiques

KA0 = (/KA2 + KA0 + (KA2 * (S0 + SU + E1))) * /KA1

KA1 = ((KA0 * S1) + KA1) * /KA2

KA2 = ((KA1 * (KT + S0 + SU + E1)) + KA2) * /KA0

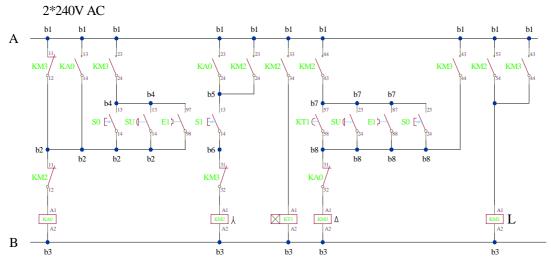

KT = KA1

KM1 (ligne) = KA1 + KA2

KM2 (étoile) = KA1

KM3 (triangle) = KA2

3.2.1.4. <u>Le plan de commande</u>



Page 20 / 57

Note de dessin – Electricité

Si cette technique offre un système fonctionnel, elle a le gros désavantage de nécessiter un grand nombre de relais. Dans le cas présent, nous pourrions les réduire en remplaçant KA1 par KM2 et KA2 par KM3. Le schéma deviendrait :

Nous pourrions encore réaliser d'autres simplifications comme la mise en tête d'alimentation les arrêts d'urgence et autre thermique. Il y aurait simplification du schéma mais le nombre de relais serait resté inchangé. Cette technique est toutefois très utilisée dans les installations complexes fonctionnant en séquentiel. Les armoires établies sur cette technique peuvent d'ailleurs très simplement être remplacées par des automates programmables qui travaillent eux aussi sur la même technique.

3.2.2. Analyse par la logique.

Une autre approche est de déduire le schéma par une approche intuitive. Cette technique ne devient vraiment efficace qu'après avoir acquit une certaine expérience.

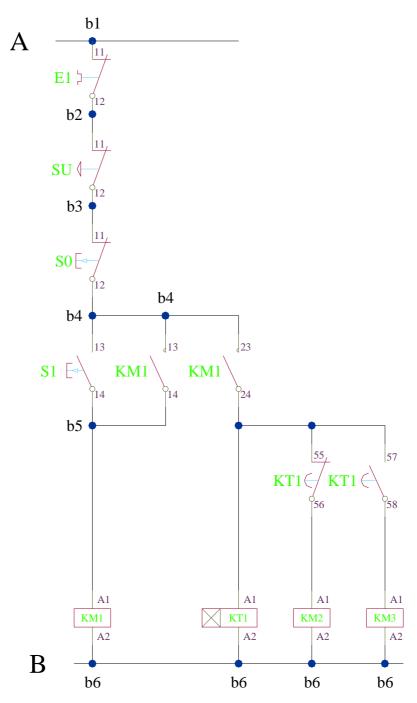
Si nous reprenons le même exemple, je peux dire que le moteur doit être mis à l'arrêt lorsqu'une des fonctions suivantes est réalisée.

- ➤ Action sur le Stop
- > Action sur l'arrêt d'urgence
- Déclenchement du thermique moteur.

Arrêter le moteur revient à interrompre le fonctionnement des contacteurs. Hors l'arrêt des contacteurs peut-être obtenu par une simple interruption de l'alimentation. Je peux donc utiliser des contacts normalement fermés de chaque condition pour réaliser cette interruption d'alimentation. Comme les trois doivent avoir une action directe, les trois contacts seront placés en série.

Page 21 / 57

Note de dessin – Electricité

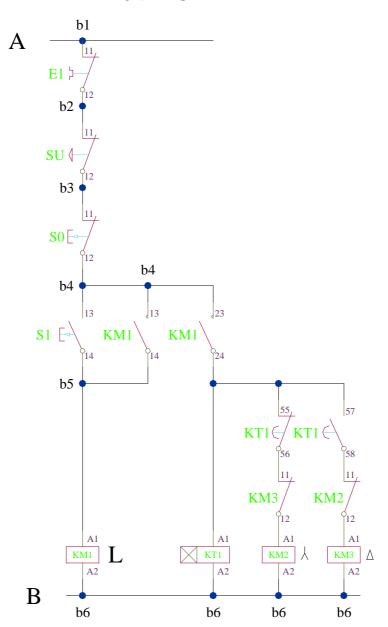


Il me faut maintenant réaliser le démarrage en étoile lors de l'action sur le Start et le passage automatique en triangle. La commutation automatique sera réalisée par une temporisation. Comme je dois veiller à ce que le fonctionnement étoile ne se superpose pas au fonctionnement triangle, je vais utiliser le contact normalement fermé pour verrouiller le fonctionnement étoile et le contact normalement ouvert pour verrouiller le fonctionnement triangle. Je sais que le contacteur de ligne doit fonctionner aussi bien en étoile qu'en triangle, je peux donc le commander avec le Start et le maintenir puisque le Start ne donne qu'une impulsion. Noter que la temporisation peut-être lancée dés l'activation du contacteur de ligne. Il est encore nécessaire avant d'activer le contacteur étoile ou le contacteur triangle de vérifier que le contacteur de ligne est bien enclenché. Pour ce faire, je vais placer un contact de ce dernier sur la ligne d'alimentation des deux autres contacteurs.

Page 22 / 57

Note de dessin – Electricité

2*240V AC



Le schéma ne peut toutefois pas rester comme cela, en effet vous devez prévoir l'imprévisible à savoir que l'un des contacteurs KM2 ou KM3 reste collé suite à un coup d'arc. Pour éviter toute destruction par court-circuit, vous devez absolument empêcher le contacteur étoile d'être activé si le contacteur triangle est collé et vice versa. Pour ce faire, il vous faut encore ajouter des contacts de verrouillage.

Page 23 / 57

Note de dessin – Electricité

2*240V AC

Vous devez encore placer les bornes (rond noirci) pour préciser une connexion. Si la connexion passe par le bornier elle sera numérotée. La règle est simple, il faut placer une borne pour toute liaison entre un élément placé dans le coffret et un élément placé en dehors du coffret. Est compris comme dehors, les composants placés sur le fronton ou sur la porte du coffret de même que les commandes délocalisées sur la machine.

Ce ou ces plans réalisés, vous pouvez maintenant déduire le nombre de relais et/ou de contacteurs mis en œuvre. Sur cette base, vous pouvez réaliser la note de calcul pour la commande.

Voir un autre exemple pages 33 et 34

Note de dessin – Electricité

Page 24 / 57

3.3. Etablissement des plans de puissance

Une fois le plan de commande établit, vous pouvez dresser les plans de puissances. Sur base de ces derniers il vous sera alors possible de réaliser la note de calcul pour la puissance.

Le plan de puissance est souvent le plan le plus simple et le plus rapide à dresser. Il reprend l'ensemble des contacts de puissance de votre pré actionneur (contacteur) de même que les protections spécifiques pour protéger votre actionneur..

Enfin, le plan reprendra l'actionneur proprement dit, moteur, éclairage, résistance, etc.

Le plan de puissance doit reprendre des informations telles que :

- Les lettres de chaque phase en relation avec le plan de distribution.
- ➤ Le rappel de la tension de service
- Le nom de chaque élément
- Le courant ou la plage de courant au droit de chaque composant
- La section des conducteurs y compris le câble d'alimentation de l'actionneur
- Le repérage des bornes et leur numérotation
- Les mises à la terre
- Le respect du code des couleurs définis sur la page de garde (facultatif)

Voir un autre exemple page 35

3.4. <u>Détermination des notes de calcul</u>

La façon dont la mise page de cette étude est transcrite n'a que peu d'importance, ce qui est important c'est que toutes les informations soient présentes.

Vous devez réaliser trois notes de calcul minimum :

- ➤ Une note de calcul pour la commande et la signalisation
- > Une note de calcul pour la puissance
- > Une note de calcul pour la distribution

COURS DE DESSIN

Note de dessin – Electricité

2

Page 25 / 57

3.4.1. Pour la partie commande et synoptique

Vous devez dans un premier temps réaliser l'inventaire des composants que vous allez retrouver dans ces plans :

- ➤ Les relais
- > Les contacteurs
- > Les relais temporisés
- > Les témoins lumineux
- > Les témoins sonores
- > Autres

Pour chacun des éléments, vous devez en définir les caractéristiques afin d'en garantir la compatibilité. Même tension de service, même nature. Ce qui est important de déterminer, ce sont les courants d'appel et de maintien pour chaque appareil ou type d'appareil.

En fonction du nombre d'appareil utilisé, vous pouvez déduire les courants totaux consommés par chaque série d'appareils et ensuite pour l'ensemble des composants de la commande. Une fois les résultats déduis, il vous reste à définir le type de protection à retenir et la valeur de cette dernière.

Voir exemple page 29

3.4.2. Pour la partie puissance

Dans le cas de la puissance, vous devez au départ des informations en votre possession (CDC et plaque à bornes) déterminer la consommation, par phase, de chacun des récepteurs ou groupement de récepteurs à desservir.

Vous devez ici rester attentif lors de vos calculs au type de réseau d'alimentation. Une fois en possession des courants par phase, vous devez réaliser la répartition des phases pour les récepteurs monophasés. Il faut veiller à répartir les courants sur l'ensemble des phases sans en surchargée une. Une fois ce travail réalisé, vous pourrez déduire le type de protection à placer et la valeur de cette dernière. Pour les moteurs, tenez compte des pointes de courant au démarrage dans le choix de vos protections.

Voir exemple page 30

3.4.3. Pour la partie distribution

Dans le cas de la distribution, il s'agit en fait de remettre en commun les deux autres note de calcul pour déterminer le solde des organes de protection.

Pour chaque circuit de commande, réaliser la répartition des phases en regard au jeu de barres. Retranscrire le courant par phase. Vous ferez de même avec chaque circuit de puissance.

Une fois toutes vos informations transcrites, vous devez être capable pour chaque circuit d'avancer le courant par phase.

Il vous reste maintenant à réaliser la somme de tous les courants dans chacune des phases.

Page 26 / 57

Note de dessin – Electricité

Sur base des résultats obtenus, vous retiendrez le courant (le plus élevé) dans la phase la plus sollicitée. Ce résultat vous permettra de définir la valeur de la protection générale. Pour ce qui est des caractéristiques de la protection, vous devez veiller à ce que cette dernière ne déclenche pas prématurément avant les protections en aval. Par exemple lors d'un démarrage moteur. La courbe sera donc au minimum équivalente à la courbe la plus élevée déjà existante sur les départs secondaires.

Noter que le calcul réalisé ici reste approximatif de part le fait que nous ne tenons pas compte des différents déphasages des courants en jeu. Sachez que l'erreur réalisée par l'application d'une somme algébrique des courants en lieu et place d'une somme vectorielle des courants entraîne un courant total supérieur au courant réel. Nous garantissons donc la protection de l'installation. Nous avons seulement quelque peu surdimensionné l'installation.

Sur base de vos notes de calcul, vous pourrez compléter vos plans de distribution et les finaliser.

Voir exemple page 31

3.5. Le dimensionnement de la filerie

Lorsque vous avez établit au propre l'ensemble des plans de distribution, de commande et de puissance, il vous reste encore à définir les sections et les caractéristiques des conducteurs à mettre en œuvre dans le câblage. On applique en général la règle 6A par mm² pour déterminer la section. N'oubliez pas que vos protections doivent protéger vos conducteurs et qu'il n'est pas souhaitable de sur dimensionner les sections pour des raisons économiques et de mise en œuvre. Le type de conducteur dépendra du RGIE, du cahier des charges et des situations particulières définies.

3.6. Le bornier

Dans les services de câblage, il est très rare de voir les ouvriers câbler au départ des plans. Dans la majorité des cas, les ouvriers ont à leur disposition une liste des liaisons et un plan de bornier. Il est impératif d'établir le plan de bornier car il s'agit de l'élément du coffret qui va réaliser la liaison vers l'extérieur. Se sera donc sur lui que les derniers conducteurs seront placés lors du montage. Le repérage et le respect de ce dernier lors de la mise en œuvre est très important pour permettre une maintenance efficace par la suite.

Voir exemple page 36

Note de dessin – Electricité

Page 27 / 57

3.7. Les listes des liaisons

Comme signalé ci-dessus, ces listes sont souvent les seuls documents que possèdent les ouvriers lors des câblages. Elles permettent un gain de temps considérable et limite les risques d'erreur. Elles jouent également le rôle de tcheck liste, chaque conducteur mis en place est acté sur la liste ce qui permet de vérifier la mise en place de tous les conducteurs et de garantir un suivit optimum de la mise en œuvre après les pauses réglementaires.

Voir exemple pages 37,38 et 39

Il est également courant de numéroté les conducteurs aboutissant aux composants. Cette technique permet par la suite de faciliter les recherches de pannes dans les armoires câblées. La méthode de numérotation des conducteurs n'est pas normalisée, nous sommes libre d'utiliser une technique au choix qui peut-être du plus simple, un nombre ou plus complexe en reprenant le numéro du contact et l'indice du composant. Il faut toutefois que la technique reste simple.

3.8. La liste du matériel

Cette dernière finalise le dossier, elle doit reprendre bien sur tous les composants mis en œuvre, leur nombre, une description et surtout les caractéristiques. Pour être complet, les marques et les références seront encore transcrites.

L'idée de cette liste est de permettre, lors de maintenance, de définir rapidement les caractéristiques d'un composant en vue de son changement.

Avec cette seule liste, il doit être possible d'acquérir chaque composant chez un revendeur ou un magasinier.

Voir exemple page 40

3.9. La page de garde

Chaque dossier électrique est accompagné par une page de garde. Cette dernière reprend outres les informations générales sur l'entreprise et le chantier, d'autres informations importantes comme la table des matières du dossier et le code des couleurs utilisé pour la filerie.

Voir exemple page 28

4. Exemple de dossier complet

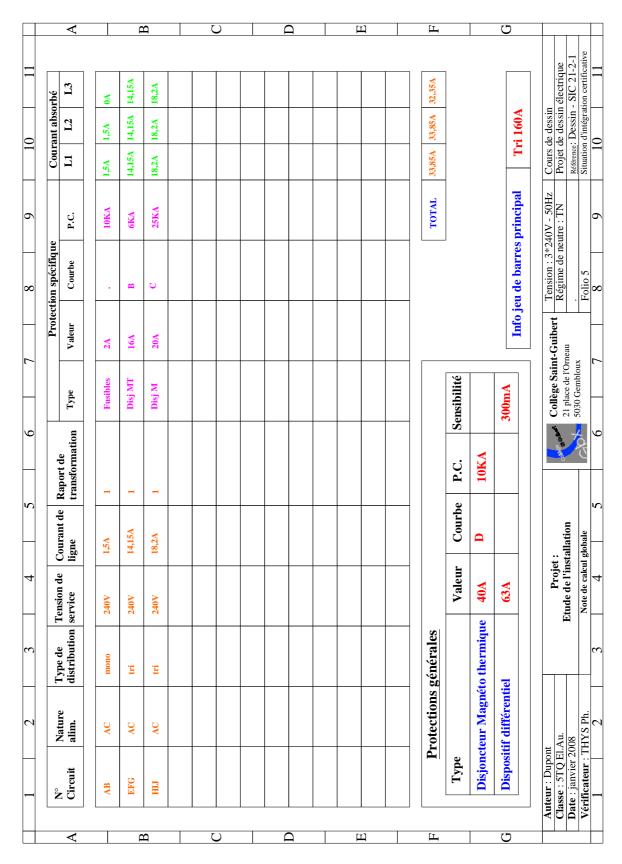
Voici la présentation et le contenu d'un dossier pour un coffret devant gérer le démarrage d'un moteur asynchrone à cage. Le démarrage sera de type étoile-triangle automatique. Le moteur pourra par choix tourner dans les deux sens.

Page 28 / 57

COURS DE DESSIN

Page 29 / 57

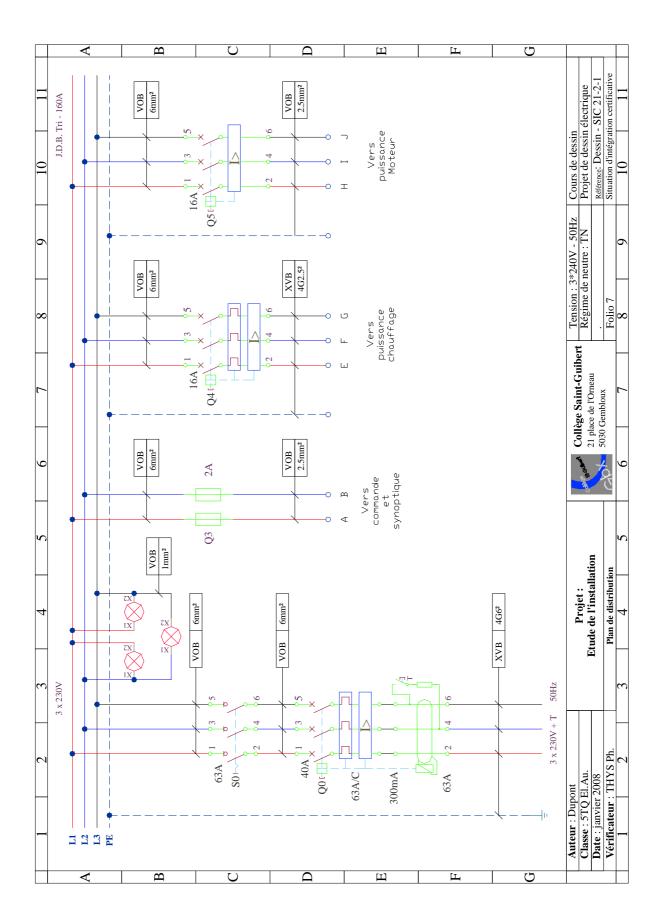
	1 2 3	4	N	9	7	8	6	10 11	
	Note de calcul dressée avec le matériel Moeller (séries: Diler, Dilem, Dilet,)	vec le maté	iriel Moel	ler (séries	: Diler, Di	lem, Dilet			
A	Matériel mis en oeuvre		Consor	Consommation	Nombre	Consommation totale	on totale		∢
			I maintien	I appel		I maintien	I appel		
	Relais bobine 230V 50Hz		0.02A	0.15A					
В	Relais temporisé bobine 230V 50Hz		0.01A	0.02A	1	0.01A	0.02A		В
	Contacteur bobine 230V 50Hz		0.2A	0.5A	4	0.8A	2A		
	Témoin lumineux (type néon) 230V 50Hz	Z	0.015A	0.015A	S	0.075A	0.075A		
Ü	Témoin lumineux (type led) 230V 50Hz		0.025A	0.025A					Ŋ
	Témoin lumineux (type incandescence) 230V 50Hz	230V 50Hz	0.03A	0.03A					
	Signal sonore (type buzzer) 230V 50Hz		0.008A	0.008A					
Ω	Signal sonore (type sirene) 230V 50Hz		0.05A	0.05A					Ω
	Signal sonore (type vibreur) 230V 50Hz		0.01A	0.01A					
	Gyrophare 230V 50Hz		0.35A	0.64A					
Щ									口
Ц									Ц
	Nom du circuit: AB	Total du c	courant de main	ntien circuit com	Total du courant de maintien circuit commande 240V AC	0.885A			
٢	Type réseau: 240V AC		Total du	courant d'appel	Total du courant d'appel circuit commande 240V AC	e 240V AC	2.095A		٢
)	Protection: fusibles 2A / 10KA)
	Auteur : Dupont	Projet:		Collèg	Collège Saint-Guibert	Tension: 3*240V - 50Hz Régime de neutre : TN	40V - 50Hz	Cours de dessin	+
		Etude de l'installation	uo	21 plac	21 place de l'Orneau		unc . III	Référence: Dessin - SIC 21-2-1	
	S Ph.	Note de calcul commande (Alim. 240V AC)	1. 240V AC)		embloux	Folio 3 ter	4	Situation d'intégration certificative	
	1 2 3	4	δ.	9	7	∞	6	10 11	\exists



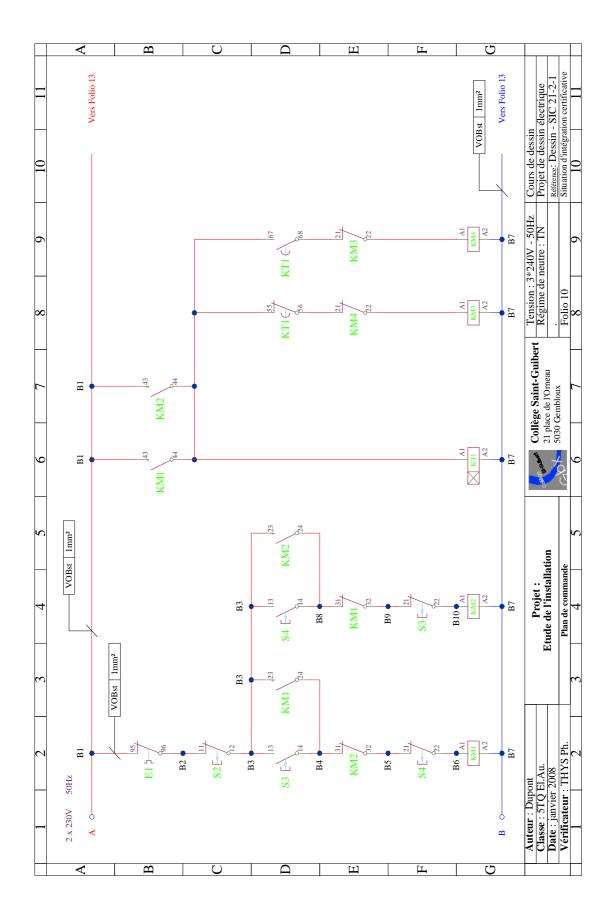
Page 30 / 57

	K		В		C		О		田		Ц		Ü				T
11	Protection	16A/B	20A/C												n electrique	- SIC 21-2-1	11 11
10	N° Circuit	EFG	HIJ											,	Cours de dessin Projet de dessin électrique	Référence: Dessin - SIC 21-2-1	10 11
6	t Total Régime	14,15A	18,2A											f	\top		6
	Courant Total Démarrage Régi	14,15A	54,6A												Tension: 3*240V - 50Hz Régime de neutre: TN		40
$ \infty $	g Z	1	_													. [Folio 4 8
7	Coefficient de pointe	1	3*In												Collège Saint-Guibert	5030 Gembloux	
9	Courant de ligne	14,15A	18,2A												Collège	21 piace 25 5030 Ger	9
	Facteur de puissance	0.85	0.82													1	
5	Tension réseau	240V	240V												; ;	Stallation	puissance 5
4	Puissance active	S000W	6200W												Projet:	Etude de l'Installation	Note de caicui puissance
κ	Type	Tri	Tri														ω
1 2	Mise en oeuvre du matériel	Résistance chauffante	Moteur asynchrone											A	Auteur : Dupont Classe : 5TQ El.Au.	Date: janvier 2008	Verificateur: THYS Ph.
			В		C		Ω	1	山		<u> </u>		ט		~ _		+

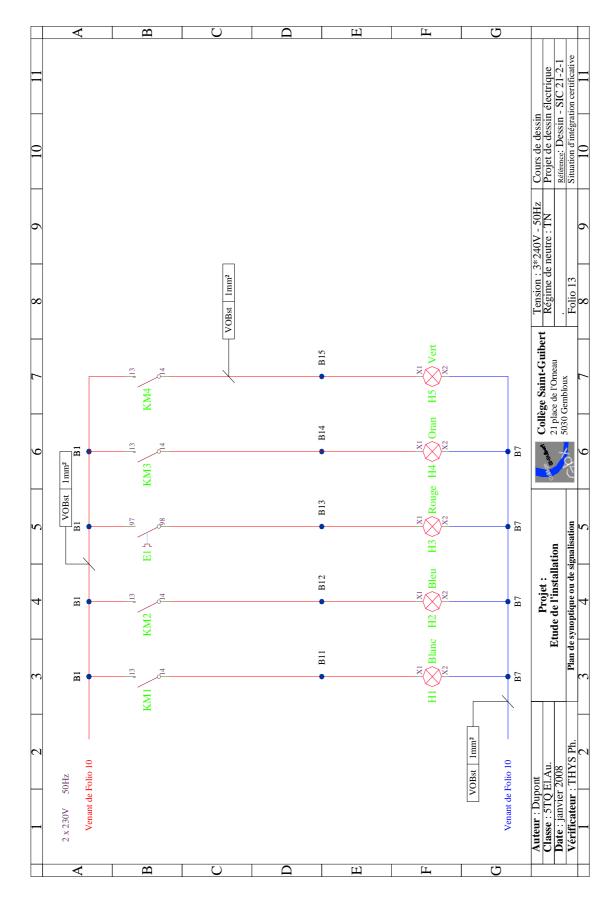
Page 31 / 57

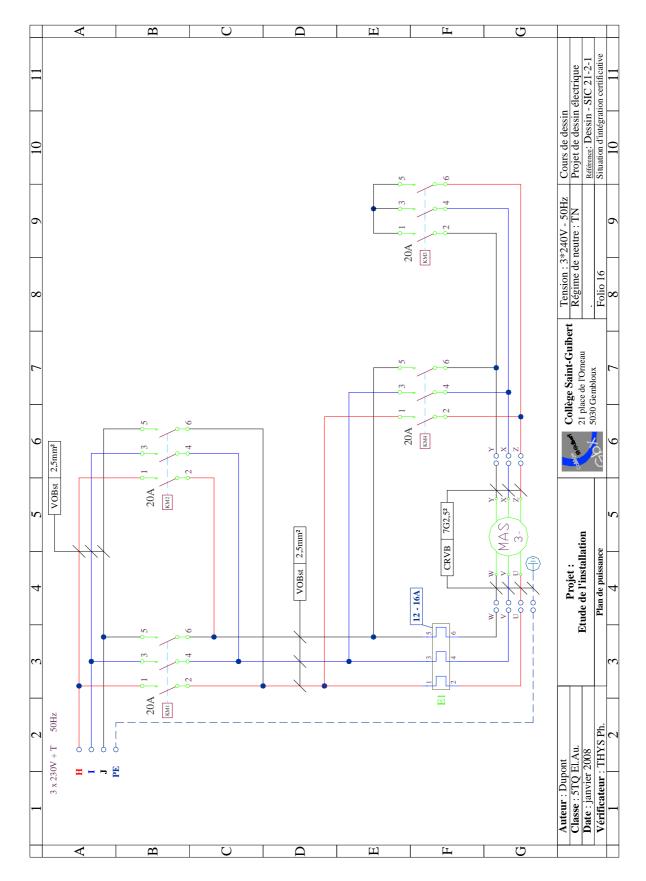


Page

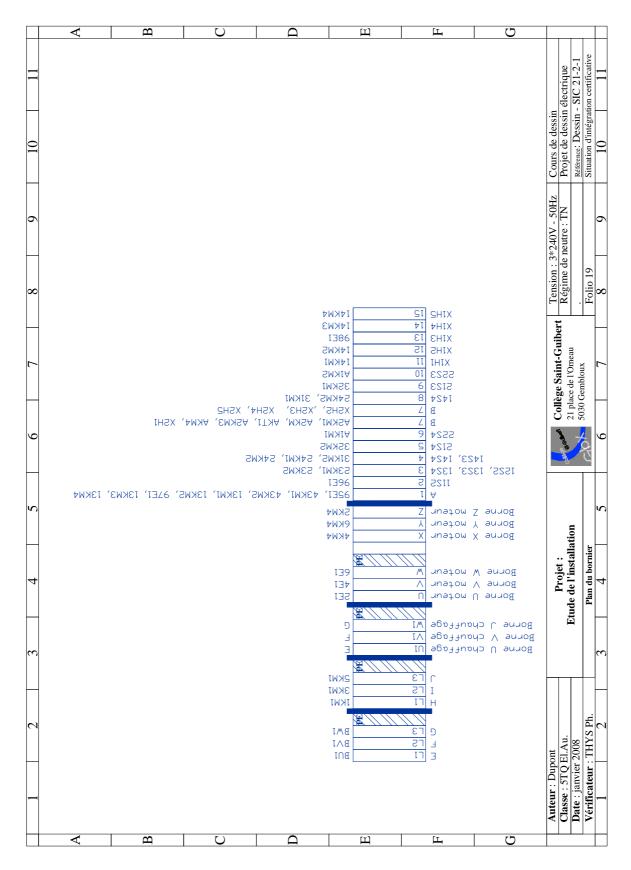

Note de dessin – Electricité

32 / 57


Page 33 / 57


Page

34 / 57



Page 35 / 57

Page 36 / 57

Page 37 / 57

•	4		Ç	A		Ţ)		Ĺ	<u> </u>		Ĺ	ц		Ľ	Ļ		(5		
tion																				Cours de dessin Projet de dessin électrique	Référence: Dessin - SIC 21-2-1
de distribu	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	Cours de dessin Projet de dessin	Référence: Dess
Liaisons du plan de distribution	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	Tension: 3*240V - 50Hz Régime de neutre: TN	
Liaisons du plan de distribution	vers 104	vers 304	vers 504	vers BE	vers BF	vers BG	vers 105	vers 305	vers 505	vers BH	vers BI	vers BJ	vers	vers	vers	vers	vers	vers	vers	Collège Saint-Guibert	5030 Gembloux
u plan de	L1JDB	L2JDB	L3JDB	2Q4	404	6Q4	L1JDB	L2JDB	L3JDB	205	405	605								Transport of the state of the s	**************************************
Liaisons d	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	fion	
ıtion	200	400	009	2S0	4S0	0S9	L1JDB	L2JDB	L3JDB	9H1X	L1JDB	X1H7	L3JDB	X1H8	L3JDB	103	303	BA	BB	Projet:	
e distribu	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers		•
lu plan de	L1	L2	L3	100	300	500	180	380	2S0	L2JDB	Х2Н6	L2JDB	X2H7	L1JDB	Х2Н8	L1JDB	L2JDB	203	403		ā
Liaisons du plan de distribution	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	Auteur: Dupont Classe: STQ El.Au.	Date: janvier 2008
	<u> </u>																			Auteu Classe	Date:

Page 38 / 57

	•	₹		۲	2		(<u>ن</u>		£	_		Ĺ	ŋ		Ē	Ļ		ζ	כ				Ŧ
11	de	21KM3	A1KM4	A2KM3	B11	X1H1	A2KM4	B12	X1H2	X2H1	B13	Х1Н3	X2H2	B14	Х1Н4	Х2Н3	B15	Х1Н5	Х2Н4].≘	in électrique	Référence: Dessin - SIC 21-2-1	Situation d integration certificative 10 11
10	Liaisons du plan de commande	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	Cours de dessin	Projet de dessin électrique	Référence: Dessi	10 10
6	u plan de	68KT1	22KM3	A2KM4	14KM1	B11	X2H1	14KM2	B12	X2H2	98E1	B13	Х2Н3	14KM3	B14	Х2Н4	14KM4	B15	X2H5		H		E10	6
	jaisons d	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	sion · 3*240V	Régime de neutre : TN	8	Folio 22 8
∞																							. [- - - - - - - - - - - - - - - - - - -
7	nde	A1KM1	B7	B4	B8	B8	31KM1	B9	21S3	B10	A1KM2	A2KM1	A1KT1	A2KM2	44KM1	55KT1	67KT1	21KM4	A1KM3	A2KT1		Collège Saint-Guibert	loux	7
	comma	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	1	Collège Saint-Gu	5030 Gembloux	
9	ı plan de	B6	A2KM1	24KM1	14S4	24KM2	B8	32KM1	B9	22S3	B10	A2KM2	44KM1	A2KT1	44KM2	44KM2	55KT1	56KT1	22KM4	A2KM3		The Godge	to to	9
S	Liaisons du plan de commande	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De			, ומוו	nande 5
																						Projet:	IIIStallat	ns de conin
4	ıde	95E1	43KM1	43KM2	13KM1	13KM2	13KM3	13KM4	B2	1182	B3	1383	13S4	23KM1	23KM2	B4	31KM2	B5	21S4	B6		Projet:	i an anma	Liste des haisons de commande
3	comma	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers				3
2	Liaisons du plan de command	B1	95E1	43KM1	43KM2	13KM1	13KM2	13KM3	96E1	B 2	12S2	B3	13S3	B3	23KM1	14S3	B4	32KM2	B5	22S4			 	s Pn.
	aisons de	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	Auteur: Dupont	Classe: 5TQ El.Au.	Date: janvier 2008	Verificateur: THYS Ph. 1 2
	Li																				Auteur	Classe:	Date: ja	Verinca 1
	•	4		٢	n		ζ	<u>ن</u>		Ĺ	<u> </u>		ļ	ц		[ц		ζ	כ				\pm

Page 39 / 57

3	П	•	₹		ŗ	Я		(ر		4	<u> </u>		Ĺ	ц		ŗ	Ļ		ζ	5				
Liaisons du plan de puissance Liaisons du plan de l'initatallation De 4KM4 Vers 2KM3 De 4KM3 Vers 2KM3 De 4KM3 Vers 2KM3 De 4KM4 Vers 2KM3 De 4KM3 Vers 2KM3 De 4KM4 Vers 3E1 Vers 3E1 Vers 3E1 De 4KM4 Vers 3E1 De 4KM4 Vers 3E1 Vers 3E1 Vers 3E1 De 4KM4 Vers 3E1 Vers 3E1 Vers 3E1 De 4KM4 De 4KM4 De 4KM4 Vers 3E1 De 4KM4 De 4KM4	11																						lectrique SIC 21-2-1	n certificative	11
Liaisons du plan de puissance BH Vers 1KM1 BI Vers 3KM1 BI Vers 3KM2 SKM1 Vers 5KM2 SKM1 Vers 1E1 SKM1 Vers 3KM4 SKM1 Vers 3E1 SKM2 Vers SKM3 Vers SKM4 Vers 3KM4 SE1 Vers 3KM4 SE1 Vers SKM4	10	de puissance	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	Cours de dessin	Projet de dessin é	Situation d'intégratio	10
Liaisons du plan de puissance BH Vers 1KM1 BI Vers 3KM1 BI Vers 3KM2 SKM1 Vers 5KM2 SKM1 Vers 1E1 SKM1 Vers 3KM4 SKM1 Vers 3E1 SKM2 Vers SKM3 Vers SKM4 Vers 3KM4 SE1 Vers 3KM4 SE1 Vers SKM4	6	isons du plan	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	n : 3*240V - 50Hz	e de neutre : TN	4	6
Liaisons du plan de	∞	Lia																				, Ш		Folio 2	8
Liaisons du plan de	7	eou	4KM3	2KM3	BZ	BX	BY	3KM3	5KM3													Saint-Guihert	l'Orneau	Noux	7
Lange 3 4 4 4 5 6 6 6 6 6 6 6 6 6		puissar	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	Collège	21 place de	SUSU Gemi	
Lange 3 4 4 4 5 6 6 6 6 6 6 6 6 6	9	plan de	KM4	KM4	KM4	KM4	KM4	KM3	KM3													*	A CONTRACTOR OF THE CONTRACTOR	2 2 2	9
Lange 3 4 4 5 6 6 6 6 6 6 6 6 6	v	Liaisons du								De	De	De	De	De	De	De	De	De	De	De	De		tion	ssance	ĸ
1	4		1KM1	3KM1	5KM1	1KM2	3KM2	SKM2	6KM2	4KM2	2KM2	161	3E1	SE1	1KM4	3KM4	5KM4	BU	BV	BW	6KM3	Droint .	Etude de l'installa	liste des liaisons de pui	4
2 2 De BH De BI De BI De BI De SKMI De SKMI De SKMI De SKMI De KKMI De SEI DE SE	3	puissan	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers	vers				3
De De De De De De De De	2	lu plan de	ВН	BI	BJ	1KM1	3KM1	5KM1	2KM1	4KM1	6KM1	2KM1	4KM1	6KM1	1E1	3E1	5E1	2E1	4E1	6E1	2KM4		-:	S Ph.	2
		iaisons d	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	De	: Dupont	: 5TQ El.Au anvier 2008	ateur : THY	
A I A I A I A I A A			<u></u>			<u></u>									<u>п</u>			L,			5	Auteur	Classe Date : i	Vérific	_

Page 40 / 57

		V					2	Ω					ر))					Ĺ	1				[I,				Ċ)				_	1	
11	Référence		566858	607622	652026	XB4BVM3	XB4BVM3	XB4BVM3	619026	619000	610020	672173	672237	39061	39371					XB4BA42	XB4BA31	DILEM-10 (240VAC)	40 DILE	ETR2-11	ZB12-16	ZB32-XEZ											lessin	Projet de dessin électrique	Référence: Dessin - SIC 21-2-1	Situation d'intégration certificative	
10	Marque		Vynckier	Vynckier	Vynckier	téléméc	téléméc	téléméc	Vynckier	Vynckier	Vynckier	Vynckier	Vynckier	Legrand	Legrand					téléméc	téléméc	Moeller	Moeller	Moeller	Moeller	Moeller										,	Cours de dessin	Projet de c	Référence: De	Situation d'i	10
6																								e V							1						Tension: 3*240V - 50Hz	eutre : TN		(6
8		7.2.0	UKA	odnles						20mm		KA	5KA											0s 1 inverseur													Tension: 3*	Régime de neutre : TN		Folio 26	×
7	techniques		40A - tripolaire - courbe D - 10KA	63A - tripolaire - 300mA - 2 modules	- 4 modules	te - E10	te - E10	te - E10	10KA	bipolaire - 220/380V - entraxe 20mm	NIC	16A - tripolaire - courbe B - 6KA	16A - tripolaire - courbe M - 25KA	42	42				şe.	NF - 6A	O - 6A	NO - 16A	n) - 6A	retardé enclenchement 1,5 à 30s 1 inverseur - 6A	aire		noir	oleu	enge.								Collège Saint-Guibert	Orneau	xnc	_	_
	Caractéristiques techniques		A - tripolaire	4 - tripolaire	63A - tripolaire - 4 modules	240V - Led - verte - E10	240V - Led - verte - E10	240V - Led - verte - E10	à broches - 2A - 10KA	olaire - 220/3	RSTN - 160A - DIN	4 - tripolaire	4 - tripolaire	DIN35 - section 4 ²	DIN35 - section 42	XVB 4G62	VOB 6mm ² noir	VOB 6mm ² bleu	VOB 6mm2 rouge	rouge complet 1NF - 6A	vert complet 1NO - 6A	tripolaire avec 1NO - 16A	4NO (pour Dilem) - 6A	ardé enclench	12 à 16A - tripolaire	DIN 35	VOBst 2.5mm ² noir	VOBst 2.5mm ² bleu	VOBst 2.5mm2 rouge		d	<u>ا</u>					Collège Sa	21 place de l'Orneau	5030 Gembloux		_
9	<u> </u>		40,	03,	· 3	240	24	24	àb	bit	RS	16,	16	IO	IO	X	Λ	A	^	roı	ve	tri	4N	ret	12	IO	Λ	Λ) A	,		\ \ \ \						AND STORY	75	Ž	0
5			nigue							ches		nique																			L L							tion		1	c
4			Disjoncteur magneto thermique	erentiel	sectionneur	neux	neux	neux		Base de coupe circuit à broches		nagnéto thern	nagnétique	rd	nne					oir	oir		liaire	isé	oteur	ermique				•	o in						Projet.	rrejer: Inde de l'installation		Liste du matériel	4
3	Désignation		Disjoncteur n	Dispositif differentiel	Interrupteur-sectionneur	Témoin lumineux	Témoin lumineux	Témoin lumineux	Fusible	Base de coup	Jeu de barres	Disjoncteur magnéto thermique	Disjoncteur magnétique	Borne standard	Borne vert-jaune	câble	conducteur	conducteur	conducteur	Bouton poussoir	Bouton poussoir	Contacteur	Contact auxilliaire	Relais temporisé	Thermique moteur	Socle pour thermique	conducteur	conducteur	conducteur	•	101							Etne			3
	Folio		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	10	10	10	10	10	16	16	16	16	16											þ.	
2	Renère		3	3	S0	9H	H7	H8	ප	63	JDB	64	S	В	2					S2	S3	KM1	KM1	KT1	E1	E1					1						pont	El.Au.	er 2008	r : THYS P	7
1	ŝ	п г	1	1	2 1	3 1	4 1	5 1	6 2	1	7 1	8 1			T	T			15 ff	16 1	17 1	18 1	19 1	20 1	21 1	22 1			25 ff								Auteur: Dupont	Classe: 5TQ El.Au.	Date: janvier 2008	Vérificateur : THYS Ph.	_
		V					Ω	η					ر)		I			_	١					Ĺ	1				[Ľ				٢)						

Page 41 / 57

Note de dessin – Electricité

5. Documents techniques utile

Chute tension: 3 % Spanningsverlies: 3

Cos. phi = 1 Cos. phi = 1

S (mm²)

220 V MONOPHASE 220 V EENFAZIG

Page 42 / 57

Note de dessin – Electricité

Chute tension: 5% Spanningsverlies: 59

Cos. phi = 0,8 Cos. phi = 0,8

S (mm²)

240																				645	540	465	405	360	325	270	230	205	180	160	145
185																			089	540	450	385	340	300	270	225	195	170	150		
150																	725	640	575	460	390	330	290	760	230	195	165	145			
120																715	630	260	200	400	335	290	250	220	200	165	140				
92														840	700	009	525	470	420	340	280	240	210	185	170	140					
70											920	795	710	640	530	460	400	360	320	760	215	185	160	145	130						
20									902	760	059	575	510	465	385	335	290	260	235	190	160	135	115	17723							
35							902	820	730	610	520	450	405	365	305	760	225	200	180	145	120	100									
25					870	740	650	580	520	435	370	325	290	260	220	185	165	145	130	105											
16			850	675	260	485	425	375	340	285	245	215	190	170	140	120	105	94	85												
10		725	540	435	365	315	275	245	220	185	160	140	125	115	94	80	89					+ + + + + + + + + + + + + + + + + + + +	. eu	ıng							
9	655	440	325	265	220	190	165	145	130	110	94	82	73	9	54							The state of	a ecnaumement	van opwarming							
4	445	295	220	175	145	125	110	97	98	73	63	99	49									1 277	IIIIIII a e	grens var							
2,5	280	185	140	110	92	78	89	61	54	46	40																				
1,5	165	110	84	- 29	56	48	43	37	33																						
A	m	2	7	00	10	12	13	15	17	20	23	26	30	33	40	46	53	59	99	82	98	115	131	148	164	197	230	263	296	328	361
kW	-	1,5	2	2,5	m	3,5	4	4,5	2	9	7	œ	0	10	12	14	16	18	20	25	30	35	40	45	20	909	70	80	8	100	110

Pheloc

COURS DE DESSIN

Page 43 / 57

Note de dessin - Electricité

Chute tension: 5 % Spanningsverlies: 5 %

S (mm²)

Cos. phi = 0.8Cos. phi = 0.8

V TRIPHASÉ V DRIEFAZIG

Page 44 / 57

Note de dessin - Electricité

LA PROTECTION des LIGNES

20.5 LES DISJONCTEURS

20.5.1 Temps de coupure des disjoncteurs

La caractéristique d'un disjoncteur modulaire porte sur deux domaines importants :

 la partie thermique : la commande de coupure est donnée par le bimétal avec un temps de coupure de 0,1 s au minimum.

Avec un courant de 1,5 x ln, le disjoncteur doit déclencher dans l'heure.

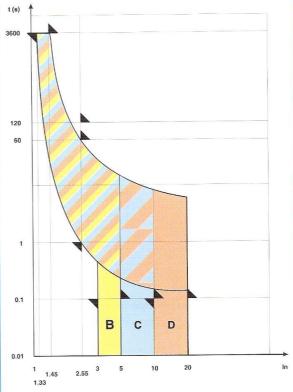
 la partie magnétique : la commande de coupure est données par l'électro-aimant avec un temps de coupure de 0,1 s au maximum.

A partir de quelle intensité de courant un disjoncteur réagit dépend du type de caractéristique:

Caractéristique B :

- * thermique jusque 3 x In,
- * déclenchement magnétique à partir de 5 x ln.
- * pour faibles courants de démarrage ou de commutation; p.e.: chauffage électrique, chauffe-eau, cuisinières électriques

Caractéristique C :


- * thermique jusque 5 x In,
- * déclenchement magnétique à partir de 10 x ln.
- * pour courants de démarrage ou de commutation moyens; p.e.: éclairage, (lampes à incandescence, halogène, TL), lave-linge, aspirateur, réfrigérateur et surgélateur, applications de type B.

Caractéristique D :

- * thermique jusque 10 x In,
- * déclenchement magnétique à partir de 20 x ln.
- * pour courants de démarrage ou de commutation forts; p.e.: stabilisateurs de tension secteur, postes à souder, moteurs et machines-outils

Normes de déclenchement

NBN C61-141			V C61-898 gnétique
Ĺ	->	В	3 à 5 In
U	->	С	5 à 10 ln
=	->	D	10 à 20 In

Caractéristique B-C-D, pour appareillage domestique

L'utilisation d'une caractéristique est déterminée par le courant d'enclenchement de la charge. Un courant d'enclenchement ne peut pas faire déclencher le dispositif magnétique, donc...

 - Une installation est sélective quand un défaut à un endroit quelconque de l'installation n'entraîne que le déclenchement du coupe-circuit qui se trouve immédiatement en amont du défaut. On fait la distinction entre une sélectivité totale ou absolue et entre une sélectivité partielle, d'exploitation ou de service.

Sélectivité totale

Indépendante de l'importance du courant de défaut, seul le coupe-circuit directement en amont déclenche.

Sélectivité d'exploitation

Pour les courants élevés de défaut, la sélectivité n'est plus assurée. Dans ce cas, le coupe-circuit en amont (du tableau de commutation principal, de l'alimentation principale, ...) déclenche également.

Page 45 / 57

Note de dessin – Electricité

Valeurs approx. en ampères Benaderde waarden in ampères

pour les valeurs précises, consulter le constructeur du moteur voor nauwkeurige waarden, de constructeur van de motor raadplegen

PUISS		EN CC IN GELIJKSTROOM	EN O MONOF IN WISSEL ÉÉNFA	PHASÉ _STROOM	IN WI	EN CA TRIPHASÉ SSELSTROOM DRIE	FAZIG
exacte nauwkeurig	approx. benaderend	220 V (1)	cos φ env. ongev.	220 V (2)	cos φ env. ongev.	220 V	380 V
kW	ch	А		А		А	А
0,18 0,25 0,37 0,55 0,75 1,1 1,5 2,2 3 4 5,5 7,5 11 15 18,5 22 30 37 45 55 75 90 110 132 160	0,25 0,33 0,50 0,75 1 1,5 2 3 4 5,5 7,5 10 15 20 25 30 40 50 60 75 100 125 150 175 220	1,2 1,6 2,3 3,4 4,5 6,3 8,5 12,5 17 24 30 44 61 82 93 111 150 186 222 270 370	0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,75 	2,3 3,0 4,0 5,0 7,0 8,8 12,0 17,5 22,5 28,0	0,68 0,71 0,73 0,74 0,74 0,75 0,78 0,82 0,81 0,85 0,86 0,82 0,85 0,85 0,85 0,87 0,83 0,84 0,87	1,23 1,6 1,9 2,8 3,7 5,4 6,9 9,5 11,5 15,3 19,6 25,7 40,7 54,0 63,0 75,0 100 128 154 180 240 320 362 430 520	0,71 0,92 1,10 1,60 2,10 3,10 4,0 5,5 6,7 8,8 11,6 14,8 23,6 31,0 36,5 43,5 58 74 89 104 139 185 209 245 300
200 220	275 300	-			0,86 0,88 0,88	650 695 800	373 400 460
260 300	350 400	-	3.5	= = =	0,88	910	525

⁽¹⁾ Pour les moteurs à 110 V, multiplier ces valeurs par 2; à 440 V, diviser par 2; à 550 V diviser par 2,27.
(2) Pour les moteurs à 110 V, multiplier ces valeurs par 2; à 130 V, multiplier par 1,73.
(1) Voor 110 V motoren, deze waarden met 2 vermenigvuldigen; voor 440 V door 2 delen; voor 550 V door 2,27 delen.
(2) Voor 110 V motoren, deze waarden met 2 vermenigvuldigen; voor 130 V met 1,73 vermenigvuldigen.

Page 46 / 57

Note de dessin – Electricité

Longueur maximale d'une liaison en 220 V (triph.) (Cu) pour une chute de tension maximale de 5% Max. lengte van een verbinding in 220 V (driefas). (Cu) voor een maximale spanningsval van 5%

	(1)	Câbles posés Openluch		Câbles posés Ondergrond	
Puss kW Verm, kW	Courant normal Normale stroom	Section Doorsnede mm2	Long. Lengte m	Section Doorsnede mm2	Long. Lengte m
0,37	1,85	3 x 2,5	410	3 x 2,5	410
0,55	2,65	3 x 2,5	280	3 x 2,5	280
0,75	3,3	3 x 2,5	225	3 x 2,5	225
1,1	4,7	3 x 2,5	158	3 x 2,5	160
1,5	6	3 x 2,5	125	3 x 2,5	125
	8,8	3 x 2,5	83	3 x 2,5	84
2	11,7	3 x 2,5	64	3 x 2,5	64
4	14,5	3 x 2,5	52	3 x 2,5	52
5,5	20	3 x 2,5	37	3 x 2,5	37
7,5	27	3 x 4	44	3 x 2,5	27
11	41	3 x 6	73	3 x 4	29
15	53	3 x 10	57	3 x 10	57
18,5	65	3 x 16	74	3 x 10	46
22	78	3 x 25	96	3 x 16	62
30	105	3 x 35	99	3 x 25	71
37	125	3 x 50	115	3 x 35	83
55	181	3 x 95	150	3 x 70	110
75	240	3 x 150	165	3 x 95	110
92	300	2(3 x 70)	135	3 x 120	110
110	355	2(3 x 95)	150	3 x 185	125
150	475	2(3 x 150)	165	3 x 300	125
220	715	3(3 x 150)	165	2(3 x 185)	125
290	955	4(3 x 150)	165	2(3 x 300)	125

---- Comiddoldo unardon

Page 47 / 57

Note de dessin – Electricité

Longueur maximale d'une liaison en 380 V (triph.) (Cu) pour une chute de tension maximale de 5% Max. lengte van een verbinding in 380 V (driefas). (Cu) voor een maximale spanningsval van 5%

	(1)	Câbles posés Openluch		Câbles posés Ondergrond	
Puiss, kW Verm, kW	Courant normal Normale stroom	Section Doorsnede mm2	Long. Lengte m	Section Doorsnede mm2	Long. Lengte m
0,37	1,07	3 x 2,5	1200	3 x 2,5	1200
0,55	1,54	3 x 2,5	830	3 x 2,5	830
0,75	1,91	3 x 2,5	680	3 x 2,5	680
1,1	2,72	3 x 2,5	475	3 x 2,5	475
1,5	3,1	3 x 2,5	365	3 x 2,5	365
2,2	5,1	3 x 2,5	250	3 x 2,5	250
3	6,8	3 x 2,5	190	3 x 2,5	190
5,5 7,5 11 15	8,4 11,6 15,6 24 31	3 x 2,5 3 x 2,5 3 x 2,5 3 x 2,5 3 x 4	150 108 83 54 67	3 x 2,5 3 x 2,5 3 x 2,5 3 x 2,5 3 x 2,5	150 108 83 54 42
18,5	38	3 x 6	80	3 x 4	55
22	45	3 x 10	115	3 x 6	65
30	61	3 x 16	135	3 x 10	85
37	72	3 x 25	175	3 x 16	115
55	105	3 x 35	170	3 x 25	120
75	139	3 x 70	250	3 x 35	130
92	174	3 x 95	265	3 x 50	145
110	205	3 x 120	280	3 x 70	170
150	275	3 x 185	295	3 x 120	205
220	415	2(3 x 120)	280	3 x 240	220
290	555	2(3 x 185)	290	3 x 400	205

Ph

COURS DE DESSIN

Note de dessin – Electricité

Page 48 / 57

6. <u>SIF 20-2-1</u>

Cahier des charges.

Dans une entreprise industrielle produisant des fleurs, il est utilisé toute sorte de produit phytosanitaire pour lutter contre les maladies et garantir une croissance optimum des jeunes plantes. L'ensemble de ces produits est nocifs pour l'homme et les animaux et exige donc un entreposage dans des locaux sous clef. L'entreprise concernée dans notre cas, possède donc un local d'entreposage spécifique situé à l'intérieur d'un hangar de production.

La particularité de tous ces produits phyto reste l'odeur très forte qu'ils dégagent. Afin de ne pas incommoder le personnel devant circuler dans ces locaux lors du retrait de produit en vue d'un traitement, il a été mis en place une ventilation forcée.

La ventilation consiste à extraire l'air vicié du local pour le rejeter à l'extérieur. Dans de telle condition, il y a mise en dépression du local ce qui ne peut être accepté. Il est donc prévu une grille afin que de l'air du hangar puisse pénétrer dans le local phyto et ainsi éviter cette mise en dépression. Il est signalé que l'air est pris dans le hangar pour garantir une certaine température dans le local ventilé. Les produits phyto ne peuvent pas geler.

La ventilation sera réalisée par deux ventilateurs mis en mouvement chacun par un moteur monophasé équipé d'un condensateur.

L'un des ventilateurs fonctionnera 24h/24 tandis que l'autre se mettra en fonctionnement lorsque du personnel se trouvera dans le local. Il y aura donc détection de présence. Le système est automatique et sera géré par un coffret placé à l'entré du local. Il est également possible de forcer la marche des deux ventilateurs 24h/24.

Ce dernier devra comprendre:

- □ Les protections générales
- □ Un interrupteur général
- Des témoins de phases (l'alimentation se fera en monophasé)
- □ Un jeu de barres
- ☐ Les protections des différents circuits (chaque moteur sa protection)
- □ Un bornier
- □ Les pré-actionneurs
- □ Les témoins de fonctionnement
 - o Deux témoins verts pour préciser le fonctionnement de chaque ventilateur
 - o Deux témoins rouges pour la mise en sécurité de chaque ventilateur
 - O Un témoin orange de dérogation pour une ventilation maximale forcée

Les caractéristiques des moteurs sont les suivantes :

□ Puissance : 400 watts□ Tension service : 230 Volts

□ Courant nominal : 2.17 Ampères

Page 49 / 57

Note de dessin – Electricité

Les témoins seront de type néon.

Les bobines de relais et contacteur seront de type 230V 50Hz.

Vous êtes contacté pour réaliser cette installation y compris le coffret. Vous devez donc établir :

- > Une note de calcul
 - ✓ Protection d'un moteur
 - ✓ Protection du circuit de commande
 - ✓ Protection générale
- > Une liste du matériel
- > Le schéma de commande
- Le schéma de puissance
- ➤ Le plan du bornier
- ➤ La liste des liaisons

L'ensemble devra répondre aux réglementations énoncées par le RGIE et devra faire l'objet d'une réception par un organisme agréé.

Vous trouverez en annexe:

- ✓ Un tableau pour la liste du matériel
- ✓ Un plan de bornier
- ✓ Un document pour établir la liste des liaisons

Note de dessin – Electricité

Page 50 / 57

7. SIF 22-2-2

Cahier des charges.

Dans une entreprise industrielle de traitement de céréales, le convoyage des denrées est réalisé par des vis sans fin mises en mouvement par des moteurs asynchrones à cage.

L'accouplement est réalisé par une transmission à courroies et les moteurs seront démarrés en direct sous pleine tension.

La ligne de convoyage que l'on vous demande de réaliser à une longueur de 30 mètres. Il y a donc en place deux vis de 16 mètres. Il n'est pas concevable de faire une vis d'une telle longueur en une pièce.

Entre les deux vis, il y a une trémie qui joue le rôle de lien entre les deux vis, mais qui sert aussi de tampon de stockage.

En amont et en aval de la ligne se trouve une trémie, l'une servant de réceptacle pour le déchargement des camions (amont) et l'autre servant de régulateur pour la distribution sur la chaîne de traitement (aval).

Afin de limiter les chutes de tension lors du démarrage des moteurs, il doit être prévu un démarrage en cascade.

L'installation comporte des détecteurs répartis comme suit :

Détecteur	Trémie amont	Trémie du centre	Trémie aval
Niveau bas	Oui	Oui	Non
Niveau milieu	Non	Oui	Non
Niveau haut	Non	Oui	Oui

Le fonctionnement des vis doit respecter des conditions strictes :

La vis amont:

Mise en marche par :

✓ Action par un ouvrier sur un Bouton Poussoir « START »

Arrêt par :

- ✓ Action par un ouvrier sur un BP « STOP »
- ✓ Action par un ouvrier sur un bouton d'arrêt d'urgence
- ✓ Déclenchement du thermique du moteur
- ✓ Niveau haut de la trémie du centre atteint
- ✓ Niveau bas de la trémie amont atteint, dans ce cas lancement d'une temporisation de 5 minutes et ensuite arrêt

Photological

COURS DE DESSIN

Page 51 / 57

Note de dessin - Electricité

La vis aval:

Mise en marche par :

✓ Niveau milieu de la trémie du centre atteint

Arrêt par :

- ✓ Action par un ouvrier sur un BP « STOP »
- ✓ Action par un ouvrier sur un bouton d'arrêt d'urgence
- ✓ Déclenchement du thermique du moteur
- ✓ Niveau haut de la trémie aval atteint
- ✓ Niveau bas de la trémie du centre atteint, dans ce cas lancement d'une temporisation de 5 minutes et ensuite arrêt

Si la vis amont est arrêtée alors que la vis aval travaille toujours, il est possible si les conditions énumérées ci-dessus sont respectées de relancer la vis amont par action sur le BP « START ».

L'ensemble du système sera géré par des relais placés dans une armoire.

Cette dernière devra comprendre:

- □ Les protections générales
- □ Un interrupteur général
- Des témoins de phases (l'alimentation se fera en monophasé)
- □ Un jeu de barres
- ☐ Les protections des différents circuits (chaque moteur sa protection)
- □ Un bornier
- □ Les pré-actionneurs
- □ Les Boutons Poussoirs et arrêt d'urgence
- □ Les témoins de fonctionnement
 - o Deux témoins verts pour préciser le fonctionnement de chaque vis
 - o Deux témoins rouges pour la mise en sécurité thermique de chaque vis
 - o Un témoin orange pour chaque détection de niveau
 - O Un témoin rouge en cas d'action sur l'arrêt d'urgence

Les caractéristiques des moteurs sont les suivantes :

Moteur amont

□ Puissance: 2500 watts

□ Tension service : 230-400 Volts□ Facteur de puissance : 0.82

Moteur aval

□ Puissance: 2800 watts

□ Tension service : 230-400 Volts□ Facteur de puissance : 0.80

Les témoins seront de type néon.

Les bobines des relais et des contacteurs seront de type 230V 50Hz.

Ph

COURS DE DESSIN

Page 52 / 57

Note de dessin – Electricité

Le réseau d'alimentation sera triphasé 230V 50Hz.

Vous êtes contacté pour réaliser cette installation y compris l'armoire. Vous devez donc établir :

- ➤ Une note de calcul
 - ✓ Protection des moteurs
 - ✓ Protection du circuit de commande
 - ✓ Protection générale
- > Une liste du matériel
- Le schéma de commande
- Le schéma de puissance
- ➤ Le plan du bornier
- ➤ La liste des liaisons

L'ensemble devra répondre aux réglementations énoncées par le RGIE et devra faire l'objet d'une réception par un organisme agréé.

Note:

Nous avons un réseau 3*230V Nous avons des moteurs 230 – 400V

Quelle(s) couplage(s) peut-on réaliser sur ces moteurs ? Etoile et/ou triangle ?

Nous savons qu'en étoile au départ d'un réseau 3*230V, la tension aux bornes des bobines d'un moteur serait de 130V.

Nous savons qu'en triangle au départ d'un réseau 3*230V, la tension aux bornes des bobines d'un moteur serait de 230V.

Il faut comprendre par moteur 230-400V, un moteur dont la tension maximum admissible aux bornes des bobines est de 230V. Le 400V peut dans ce cas être utilisé si l'on réalise un couplage permettant de ne pas dépasser aux bornes des bobines du moteur une tension de 230V.

Nous devons réaliser un démarrage direct de notre moteur, quel couplage allons nous retenir ? Garder en mémoire que la puissance mécanique du moteur est fonction de la tension, il faut donc veiller à avoir la tension maximum admissible.

Note de dessin – Electricité

Page 53 / 57

8. <u>SAF 24-2-3</u>

Cahier des charges.

Dans une scierie, la lame de découpe des troncs est entraînée par un moteur asynchrone triphasé à cage. L'usine étant située à bonne distance des lignes de distribution principale du fournisseur, il faut veiller à limiter au maximum les chutes de tension dans les lignes. Il est donc demandé de prévoir le démarrage de ce moteur dans cet objectif. La solution retenue est un démarrage étoile-triangle. La machine devant démarrer à vide, il n'y a aucun problème en regard à la valeur du couple de démarrage en étoile. Le passage étoile triangle se fera de façon automatique par minuterie. Le démarrage sera lancé par action sur un BP « START ». L'arrêt par une action sur un BP « STOP ». Trois boutons d'arrêt d'urgence seront encore présents pour arrêter le système. Les BP seront placés sur le coffret électrique.

Ce dernier devra comprendre:

- □ Les protections générales
- □ Un interrupteur général
- □ Des témoins de phases (l'alimentation se fera en triphasé)
- □ Un jeu de barres
- □ Les protections des différents circuits
- □ Le départ basse tension 24V 50Hz
- Un bornier
- □ Les pré-actionneurs
- □ Les témoins de fonctionnement
 - o Un témoin vert pour préciser le fonctionnement du moteur en triangle
 - O Un témoin rouge pour la mise en sécurité du moteur
 - o Un témoin orange pour préciser le fonctionnement du moteur en étoile
 - O Un témoin rouge pour l'activation d'un arrêt d'urgence

Les caractéristiques du moteur sont les suivantes :

□ Puissance: 15000 watts

□ Tension service : 240-400 Volts□ Facteur de puissance : 0.85

Les témoins seront de type néon.

Les bobines de relais et contacteur seront de type 24V 50Hz.

Tension du réseau, triphasé 230V.

Ph

COURS DE DESSIN

Page 54 / 57

Note de dessin – Electricité

Vous êtes contacté pour réaliser cette installation y compris le coffret. Vous devez donc établir :

- > Une note de calcul
 - ✓ Protection d'un moteur
 - ✓ Protection du circuit de commande
 - ✓ Protection générale
- > Le schéma de commande
- > Le schéma de puissance
- > Définir les sections de câbles y compris celle de la ligne d'alimentation générale qui fait 350m.

L'ensemble devra répondre aux réglementations énoncées par le RGIE et devra faire l'objet d'une réception par un organisme agréé.

Note de dessin – Electricité

Page 55 / 57

9. <u>SIF 29-2-4</u>

Cahier des charges.

Localisation:

Dans une industrie sidérurgique, la concurrence exige une restructuration qui passe par une réorganisation des halls de production. Ainsi les unités de laminage seront déplacées vers un hall plus proche de la coulée à chaud. Dans cet objectif, ce hall, précédemment de stockage, doit être aménagé et une distribution électrique adéquate devra être réalisée.

Exigences du client:

Le client précise que le type de réseau disponible est le triphasé 400V +N. Une seule alimentation générale sera tirée pour alimenter le hall. Cette alimentation viendra de la cabine haute tension située à 80mètres. Cette alimentation devra permettre le fonctionnement simultané de toutes les machines.

Le client demande que tous les départs soient rassemblés dans une même armoire. Cette dernière devra reprendre :

- Trois témoins de phase (verts)
- > Trois voltmètres indiquant les tensions au droit du jeu de barre principal
- Trois ampèremètres indiquant le courant total consommé par le hall. Il est évident qu'il sera mis en place des TI.

Caractéristiques techniques:

Afin de figer au mieux les consommations, il a été défini six départs vers des armoires secondaires réparties dans le hall nous considérerons la distance maximale entre les armoires secondaires et l'armoire principale de 60mètres. La longueur du hall est de 80m.

Phelec

COURS DE DESSIN

Page 56 / 57

Note de dessin – Electricité

Armoire 1 : Eclairage et basse tension

- ✓ Eclairage du hall par 12 lignes de 20 armatures de 2*58w. compensé à 0.95. La distribution se fera en triphasé avec pose d'une boite de dérivation pour deux armatures.
- ✓ 33 Circuits de prises monophasées dont nous considérerons une puissance nominale de 2500w par circuit.

Protection différentielle pour l'éclairage

Protection différentielle par groupement de 11 circuits de prise.

Protection par disjoncteur de chaque circuit.

Armoire 2: Laminoir 1

- ✓ Puissance pour les 3 moteurs du laminoir 50Kw/mot, moteurs 230/400v, cos phi : 0.75
- ✓ Puissance des moteurs d'entraînement des rouleaux des tapis : 35kw, moteurs 230/400v, cos phi 0.82
- ✓ Puissance des armoires de commande et autre régulation et synoptique. : 5kw, cos phi : 0.91

Armoire 3: Laminoir 2

- ✓ Puissance pour les 3 moteurs du laminoir 60Kw/mot, moteurs 400/690v, cos phi : 0.79
- ✓ Puissance des moteurs d'entraînement des rouleaux des tapis : 45kw, moteurs 230/400v, cos phi 0.82
- ✓ Puissance des armoires de commande et autre régulation et synoptique. : 8kw, cos phi : 0.93

Armoire 4 : Cisaille

- ✓ Puissance pour le moteur d'entraînement 28kw, moteurs 230/400v, cos phi : 0.78
- ✓ Puissance des moteurs d'entraînement des rouleaux des tapis : 15kw, moteurs 230/400v, cos phi 0.82
- ✓ Puissance des armoires de commande et autre régulation et synoptique. : 3kw, cos phi : 0.90

Armoire 5: Enrouleuse

- ✓ Puissance pour le moteur d'entraînement 23kw, moteurs 230/400v, cos phi : 0.76
- ✓ Puissance des moteurs d'entraînement des rouleaux des tapis : 28kw, moteurs 230/400v, cos phi 0.86
- ✓ Puissance des armoires de commande et autre régulation et synoptique. : 9kw, cos phi : 0.93

Armoire 6: Pont roulant

Ph

COURS DE DESSIN

Page 57 / 57

Note de dessin – Electricité

- ✓ Puissance pour les moteurs de déplacement X-Y 25kw, moteurs 400/690v, cos phi : 0.75
- ✓ Puissance des moteurs de traction du crochet : 30kw, moteur 230/400V, cos phi 0.82
- ✓ Puissance des armoires de commande et autre régulation et synoptique. : 1.5kw, cos phi : 0.96

Nous considérerons chaque armoire comme étant équilibrée ce qui en pratique en illusoire.

Tous les démarrages seront progressifs avec une pointe de maximum 2.5 fois le courant nominal.

Structure du dossier:

L'ensemble du dossier sera présenté dans une farde à anneau comportant une page d'entête, une table des matières, le cahier des charges et un intercalaire pour chaque partie. Tu es invité à placer ces intercalaires dans des fardes chemises pour marquer les parties dans la farde. Merci de ne pas mettre vos plans dans des fardes chemises.

Vous devez fournir:

- ➤ Une note de calcul pour la détermination des puissances mises en jeu.
- > Une note de calcul pour déterminer les sections de câbles entre les armoires.
- Une note de calcul sur les protections à mettre en jeu et leurs caractéristiques.
- Le plan de distribution général du TGBT, TD1, TD2, TD3, TD4, TD5 et TD6
- ➤ Les plans des armoires, agencement des composants, sélection des armoires dans les catalogues pour le TGBT et TD1
- ➤ Le plan du fronton du TGBT